Age Estimation Based on a Single Network with Soft Softmax of Aging Modeling

نویسندگان

  • Zichang Tan
  • Shuai Zhou
  • Jun Wan
  • Zhen Lei
  • Stan Z. Li
چکیده

In this paper, we proposed a novel approach based on a single convolutional neural network (CNN) for age estimation. In our proposed network architecture, we first model the randomness of aging with the Gaussian distribution which is used to calculate the Gaussian integral of an age interval. Then, we present a soft softmax regression function used in the network. The new function applies the aging modeling to compute the function loss. Compared with the traditional softmax function, the new function considers not only the chronological age but also the interval nearby truth age. Moreover, owing to the complex of Gaussian integral in soft softmax function, a look up table is built to accelerate this process. All the integrals of age values are calculated offline in advance. We evaluate our method on two public datasets: MORPH II and CrossAge Celebrity Dataset (CACD), and experimental results have shown that the proposed method has gained superior performances compared to the state of the art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network

State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...

متن کامل

ANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)

This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

Application of Soft Computing Methods for the Estimation of Roadheader Performance from Schmidt Hammer Rebound Values

Estimation of roadheader performance is one of the main topics in determining the economics of underground excavation projects. The poor performance estimation of roadheader scan leads to costly contractual claims. In this paper, the application of soft computing methods for data analysis called adaptive neuro-fuzzy inference system- subtractive clustering method (ANFIS-SCM) and artificial  neu...

متن کامل

Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data

Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016